Associative Law of Multiplication

Aim: To solve multiplication problems involving the 3, 4 and 8 multiplication tables using the associative law.

The associative law of multiplication explains that the answer to a multiplication calculation will be the same no matter how the numbers are grouped, or in which order these groups are multiplied.
$(4 \times 8) \times 3 \quad$ is the same as $\quad 4 \times(8 \times 3) \quad$ is the same as $(4 \times 3) \times 8$

1. Solve and match up these calculations:
$(6 \times 3) \times 2=$

$4 \times(8 \times 10)=$
$(3 \times 2) \times 3=$
$(3 \times 2) \times 6=$
$6 \times(4 \times 5)=$
$(7 \times 5) \times 4=$

We can use the associative law to help us solve multiplication problems involving larger numbers.
For example: 15×8 can become $(3 \times 5) \times 8$
We can then regroup the numbers in the multiplication into the simplest calculation to solve:

$$
\begin{aligned}
& (5 \times 8) \times 3= \\
& 40 \times 3=120
\end{aligned}
$$

2. Use the associative law to solve these calculations.

a) $16 \times 8=$		
$2 \times 8) \times 8$ $(2 \times 8) \times 2$ $64 \times 2=128$	b) $18 \times 4=$	c) 20×3
d) 21×8	e) 24×4	f) 27×3
g) $28 \times 3=$	h) $15 \times 4=$	i) $12 \times 8=$

Associative Law of Multiplication

Aim: To solve multiplication problems involving the 6,7 and 8 multiplication tables using associative law.

The associative law of multiplication explains that the answer to a multiplication calculation will be the same no matter how the numbers are grouped, or in which order these groups are multiplied.

$$
(6 \times 7) \times 8 \quad \text { is the same as } \quad 6 \times(7 \times 8) \quad \text { is the same as } \quad(6 \times 8) \times 7
$$

1. Solve and match up these calculations:

$4 \times(8 \times 10)=$
$(3 \times 2) \times 7=$

$$
(6 \times 2) \times 6=
$$

$$
6 \times(6 \times 3)=
$$

$$
(7 \times 3) \times 7=
$$

We can use the associative law to help us solve multiplication problems involving larger numbers. For example: 15×7 can become $(3 \times 5) \times 7$
We can then regroup the numbers in the multiplication into the simplest calculation to solve:

$$
\begin{aligned}
& (5 \times 7) \times 3= \\
& 35 \times 3=105
\end{aligned}
$$

2. Use the associative law to solve these calculations.

$\text { a) } \begin{aligned} & 16 \times 7= \\ & (2 \times 8) \times 7 \\ & (7 \times 8) \times 2 \\ & 56 \times 2=128 \end{aligned}$	b) $18 \times 6=$	c) 20×8
d) 21×7	e) 24×6	f) 27×8
g) $28 \times 7=$	h) $15 \times 6=$	i) $12 \times 8=$

Associative Law of Multiplication

Aim: To solve multiplication problems involving the 9,11 and 12 multiplication tables using associative law.

The associative law of multiplication explains that the answer to a multiplication calculation will be the same no matter how the numbers are grouped, or in which order these groups are multiplied.
$(9 \times 12) \times 11 \quad$ is the same as $\quad 9 \times(12 \times 11) \quad$ is the same as $(9 \times 11) \times 12$

1. Solve and match up these calculations:

$(7 \times 11) \times 3=$
$(4 \times 12) \times 10=$
$(3 \times 9) \times 2=$
$(6 \times 11) \times 3=$

$$
4 \times(12 \times 10)=
$$

$$
(3 \times 2) \times 9=
$$

$$
(6 \times 2) \times 9=
$$

$6 \times(11 \times 3)=$
$(7 \times 3) \times 11=$

We can use the associative law to help us solve multiplication problems involving larger numbers. For example: 15×9 can become $(3 \times 5) \times 9$

We can then regroup the numbers in the multiplication into the simplest calculation to solve:

$$
\begin{aligned}
& (5 \times 9) \times 3= \\
& 45 \times 3=135
\end{aligned}
$$

2. Use the associative law to solve these calculations.

a) $16 \times 9=$	b) $18 \times 9=$	c) 20×9
d) 21×9	e) 24×9	f) 27×9
g) $28 \times 9=$	h) $32 \times 9=$	i) $35 \times 9=$

Associative Law of Multiplication Answers

Aim: To solve multiplication problems involving the 3,4 and 8 multiplication tables using the associative law.

The associative law of multiplication explains that the answer to a multiplication calculation will be the same no matter how the numbers are grouped, or in which order these groups are multiplied.

$$
(4 \times 8) \times 3 \quad \text { is the same as } \quad 4 \times(8 \times 3) \quad \text { is the same as } \quad(4 \times 3) \times 8
$$

1. Solve and match up these calculations:

We can use the associative law to help us solve multiplication problems involving larger numbers.
For example: 15×8 can become $(3 \times 5) \times 8$
We can then regroup the numbers in the multiplication into the simplest calculation to solve:

$$
\begin{aligned}
& (5 \times 8) \times 3= \\
& 40 \times 3=120
\end{aligned}
$$

2. Use the associative law to solve these calculations.

$\begin{aligned} & \text { a) } \begin{aligned} 16 & \times 8 \end{aligned}= \\ &(2 \times 8) \times 8 \\ &(8 \times 8) \times 2 \\ & 64 \times 2=128 \end{aligned}$	$\text { b) } \begin{aligned} & 18 \times 4= \\ & (2 \times 9) \times 4 \\ & (9 \times 4) \times 2 \\ & 36 \times 2=72 \end{aligned}$	$\text { c) } \begin{aligned} & 20 \times 3 \\ & (2 \times 10) \times \mathbf{3} \\ & (\mathbf{1 0} \times \mathbf{3}) \times \mathbf{2} \\ & \mathbf{3 0} \times \mathbf{2}=\mathbf{6 0} \end{aligned}$
$\begin{aligned} & \hline \text { d) } 21 \times 8 \\ &(3 \times 7) \times 8 \\ &(8 \times 7) \times 3 \\ & 56 \times 3=168 \end{aligned}$	$\text { e) } \begin{aligned} & 24 \times 4 \\ &(3 \times 8) \times 4 \\ &(8 \times 4) \times 3 \\ & \mathbf{3 2} \times \mathbf{3}=\mathbf{9 6} \end{aligned}$	$\text { f) } \begin{aligned} & 27 \times 3 \\ & (3 \times 9) \times \mathbf{3} \\ & (\mathbf{3} \times \mathbf{3}) \times \mathbf{9} \\ & \mathbf{9} \times \mathbf{9}=81 \end{aligned}$
$\text { g) } \begin{aligned} & 28 \times 3= \\ & (7 \times 4) \times 3 \\ & (4 \times 3) \times 7 \\ & 12 \times 7=84 \end{aligned}$	$\text { h) } \begin{aligned} & 15 \times 4= \\ & (3 \times 5) \times 4 \\ & (5 \times 4) \times 3 \\ & \mathbf{2 0} \times \mathbf{3}=\mathbf{6 0} \end{aligned}$	$\text { i) } \begin{aligned} & 12 \times 8= \\ & (\mathbf{2} \times \mathbf{6}) \times 8 \\ & (\mathbf{6} \times \mathbf{8}) \times \mathbf{2} \\ & \mathbf{4 8} \times \mathbf{2}=\mathbf{9 6} \end{aligned}$

Associative Law of Multiplication Answers

Aim: To solve multiplication problems involving the 6,7 and 8 multiplication tables using associative law.

The associative law of multiplication explains that the answer to a multiplication calculation will be the same no matter how the numbers are grouped, or in which order these groups are multiplied.

$$
(6 \times 7) \times 8 \quad \text { is the same as } \quad 6 \times(7 \times 8) \quad \text { is the same as } \quad(6 \times 8) \times 7
$$

1. Solve and match up these calculations:

We can use the associative law to help us solve multiplication problems involving larger numbers. For example: 15×7 can become $(3 \times 5) \times 7$
We can then regroup the numbers in the multiplication into the simplest calculation to solve:
$(5 \times 7) \times 3=$
$35 \times 3=105$
2. Use the associative law to solve these calculations.

$\text { a) } \begin{aligned} & 16 \times 7= \\ &(2 \times 8) \times 7 \\ &(7 \times 8) \times 2 \\ & 56 \times 2=128 \end{aligned}$	$\text { b) } \begin{aligned} & 18 \times 6= \\ & (2 \times 9) \times 6 \\ & (6 \times 9) \times 2 \\ & 54 \times 2=108 \end{aligned}$	
$\begin{aligned} & \text { d) } 21 \times 7 \\ & (3 \times 7) \times 7 \\ & (7 \times 7) \times 3 \\ & 49 \times 3=147 \end{aligned}$	$\text { e) } \begin{aligned} & 24 \times 6 \\ & (3 \times 8) \times 6 \\ & (6 \times 8) \times 3 \\ & 48 \times \mathbf{3}=\mathbf{1 4 4} \end{aligned}$	$\text { f) } \begin{aligned} & 27 \times 8 \\ & \left.\begin{array}{l} (3 \times 9) \times 8 \\ (9 \times 8) \end{array}\right) \times 3 \\ & \mathbf{7 2} \times \mathbf{3}=\mathbf{2 1 6} \end{aligned}$
$\begin{aligned} & \text { g) } 28 \times 7= \\ & (4 \times 7) \times 7 \\ & (7 \times 7) \times 4 \\ & 49 \times 4=196 \end{aligned}$	$\text { h) } \begin{aligned} & 15 \times 6= \\ & (3 \times 5) \times 6 \\ & (5 \times 6) \times 3 \\ & \mathbf{3 0} \times \mathbf{3}=\mathbf{9 0} \end{aligned}$	$\text { i) } \begin{aligned} & 12 \times 8= \\ & (\mathbf{2} \times \mathbf{6}) \times 8 \\ & (\mathbf{6} \times \mathbf{8}) \times \mathbf{2} \\ & \mathbf{4 8} \times \mathbf{2}=\mathbf{9 6} \end{aligned}$

Associative Law of Multiplication Answers

Aim: To solve multiplication problems involving the 9, 11 and 12 multiplication tables using associative law.

The associative law of multiplication explains that the answer to a multiplication calculation will be the same no matter how the numbers are grouped, or in which order these groups are multiplied.
$(9 \times 12) \times 11$
is the same as
$9 \times(12 \times$
11)
is the same as
$(9 \times 11) \times 12$

1. Solve and match up these calculations:

We can use the associative law to help us solve multiplication problems involving larger numbers. For example: 15×9 can become $(3 \times 5) \times 9$

We can then regroup the numbers in the multiplication into the simplest calculation to solve:

$$
\begin{aligned}
& (5 \times 9) \times 3= \\
& 45 \times 3=135
\end{aligned}
$$

2. Use the associative law to solve these calculations.

$\text { a) } \begin{aligned} & 16 \times 9= \\ & (2 \times 8) \times 9 \\ & (9 \times 8) \times 2 \\ & 72 \times 2=144 \end{aligned}$	$\text { b) } \begin{aligned} & 18 \times 9= \\ & (2 \times 9) \times 9 \\ & (9 \times 9) \times 2 \\ & 81 \times 2=162 \end{aligned}$	$\text { c) } \begin{aligned} & 20 \times 9 \\ & (2 \times 10) \times 9 \\ & (9 \times 10) \times \mathbf{2} \\ & 90 \times \mathbf{2}=\mathbf{1 8 0} \end{aligned}$
d) 21×9 $\begin{aligned} & (3 \times 7) \times 9 \\ & (9 \times 7) \times 3 \\ & 63 \times 3=189 \end{aligned}$	e) 24×9 $\begin{aligned} & (3 \times 8) \times 9 \\ & (9 \times 8) \times 3 \\ & 72 \times 3=216 \end{aligned}$	$\begin{aligned} & \text { f) } 27 \times 9 \\ & \begin{array}{l} (3 \times 9) \times 9 \\ (9 \times 9) \times 3 \\ 81 \times 3=243 \end{array} \end{aligned}$
$\begin{aligned} & \text { g) } 28 \times 9= \\ & (4 \times 7) \times 9 \\ & (9 \times 7) \times 4 \\ & 63 \times 4=252 \end{aligned}$	$\text { h) } \begin{aligned} & 32 \times 9= \\ &(\mathbf{4} \times 8) \times \mathbf{9} \\ &(\mathbf{9} \times 8) \times \mathbf{4} \\ & \mathbf{7 2} \times \mathbf{4}=\mathbf{2 8 8} \end{aligned}$	$\text { i) } \begin{aligned} & 35 \times 9= \\ & (5 \times 7) \times 9 \\ & (9 \times 7) \times 5 \\ & 63 \times 5=315 \end{aligned}$

